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320 � Foundations of Physically Based Modeling and Animation

To a mathematician, a vector is the fundamental element of what is known as a vector
space, supporting the operations of scaling, by elements known as scalars, and also
supporting addition between vectors. When using vectors to describe physical quantities,
like velocity, acceleration, and force, we can move away from this abstract definition, and
stick with a more concrete notion. We can view them as arrows in space, of a particular
length and denoting a particular direction, and we can think of the corresponding scalars
as simply the real numbers. Practically speaking, a vector is simply a way of simultaneously
storing and handling two pieces of information: a direction in space, and a magnitude or
length.

An arrow is a convenient way to draw a vector; since both length and
direction are clearly indicated. A real number is a convenient way
to represent a scalar, which when multiplied by a vector changes
its length. To the left are three visual representations of identical
vectors. They are identical, since they are all of the same length and
the same direction, i.e. they are parallel to each other. Their location
within the space is irrelevant.

In the study of physically based animation, we will initially be interested in vectors in two-
dimensional (2D) and in three-dimensional (3D) space, whose elements are real numbers.
But, we will see later that vectors can be defined in a space of any number of dimensions,
with elements that may themselves be multidimensional.

Notationally, a vector is usually denoted by a lower-case letter, which has a line over it,
like v, or is printed in bold type, like v. For hand written notes, the line is most convenient,
but in printed form the bold form is more usual. Throughout these notes the form v is
used.

v

vx

v y

A vector in 2D Euclidean space is defined by a pair of scalars arranged
in a column, like

v =

[
vx

vy

]
.

Examining the diagram to the right, we see that vx denotes the
horizontal extent or component of the vector, and vy its vertical
component. Note, that in a computer program this structure can be
easily represented as a two-element array of floating point numbers,
or a struct containing two floats. When working in 2D, the direction
of the vector can be given by the slope m = vy/vx. Its magnitude,
also called its norm, is written ‖v‖. By the Pythagorean Theorem,

‖v‖ =
√

v2
x + v2

y.

A vector in 3D space is defined by three scalars arranged in a column,

v =

vx

vy

vz

 ,
where vx is the horizontal component, vy the vertical component, and vz the depth
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component. The norm of a 3D vector v is

‖v‖ =
√

v2
x + v2

y + v2
z .

In 3D there is no simple equivalent to the slope. The direction of a 3D vector is often given
in terms of its azimuth and elevation. But, for our purposes it will be best understood by its
corresponding unit vector, which we will describe after first defining some key algebraic
vector operations.

A.1 SCALING A VECTOR

a

2a

a/2

Multiplication of a vector by a real number scalar leaves the
vector’s direction unchanged, but multiplies its magnitude by
the scalar. Algebraically, we multiply each term of the vector
by the scalar. For example

2a = 2
[
ax

ay

]
=

[
2ax

2ay

]
.

Division by a scalar is the same as multiplication by the recip-
rocal of the scalar:

a/2 =

[
ax/2
ay/2

]
.

A.2 UNIT OR DIRECTION VECTORS

a

â

The direction of a vector is most easily described by a unit vector, also
called a direction vector. A unit vector, for a particular vector, is parallel
to that vector but of unit length. Therefore, it retains the direction, but
not the norm of the parent vector. Throughout these notes the notation
v̂ will be used to indicate a unit vector in the direction of parent vector
v. For example, the unit or direction vector corresponding with the 2D
vector a would be

â =

[
ax/‖a‖
ay/‖a‖

]
=

[
âx

ây

]
.
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A.3 VECTOR ADDITION

a
a+b

b
Addition of vectors can be expressed by a diagram. Placing the
vectors end to end, the vector from the start of the first vector to
the end of the second vector is the sum of the vectors. One way
to think of this is that we start at the beginning of the first vector,
travel along that vector to its end, and then travel from the start
of the second vector to its end. An arrow constructed between the
starting and ending points defines a new vector, which is the sum
of the original vectors. Algebraically, this is equivalent to adding
corresponding terms of the two vectors:

a + b =

[
ax

ay

]
+

[
bx

by

]
=

[
ax + bx

ay + by

]
.

We can think of this as again making a trip from the start of the first vector to the end of
the second vector, but this time traveling first horizontally the distance ax + bx and then
vertically the distance ay + by.

A.4 VECTOR SUBTRACTION

b a

a - b
Subtraction of vectors can be shown in diagram form by placing the
starting points of the two vectors together, and then constructing an
arrow from the head of the second vector in the subtraction to the
head of the first vector. Algebraically, we subtract corresponding
terms:

a − b =

[
ax

ay

]
−

[
bx

by

]
=

[
ax − bx

ay − by

]
.

A.5 POINTS AND VECTORS

(0,0)

(x,y)

Y p

O

p
X

This leads us to the idea that points and vectors can be inter-
changed — almost. While vectors can exist anywhere in space,
a point is always defined relative to the origin, O. Thus, we can
say that a point, p = (x, y), is defined by the origin, O = (0, 0)

and a vector, p =

[
x
y

]
, i.e.

p = O + p.

Because the origin is assumed to be the point (0, 0), points and
vectors can be represented the same way, e.g. the point (2, 3) can be represented as the

vector
[
2
3

]
. This interchangeability can be very convenient in many cases, but can also lead
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to confusion. It is a good idea to make sure that when storing data, you clearly indicate
which values are points, and which are vectors. As will be seen below, the homogeneous
coordinates used to define transformations can help with this.

Equivalent to the above, we can write, p = p −O, i.e. a vector defines the measure from
the origin to a particular point in space. More generally, a vector can always be defined
by the difference between any two points, p and q. The vector v = p − q represents the
direction and distance from point q to point p. Conversely, the point q and the vector v
define the point, p = q + v, which is translated from q by the components of v.

A.6 PARAMETRIC DEFINITION OF LINES AND RAYS

p

â

x(t)
t

This leads us to a compact definition of a line in space,
written in terms of a unit vector and a point. Let p be a
known point (expressed in vector form) on the line being
defined, and let â be a unit vector whose direction is par-
allel to the desired line. Then, the locus of points on the
line is the set of all points x, satisfying

x(t) = p + tâ.

The variable t is a real number, and is known as the line
parameter. It measures the distance from the point p to

the point x(t). If t is positive, the point x lies in the direction of the unit vector from point
p, and if t is negative, the point lies in the direction opposite to the unit vector.

The definition of a ray is identical to the definition of a line, except that the parameter t
of a ray is limited to the positive real numbers. Thus, a ray can be interpreted as starting
from the point p, and traveling in the direction of â a distance corresponding to t, as t
goes from 0 to increasingly large positive values. On a ray, the point p is called the ray
origin, â the ray direction, and t the distance along the ray.

A.7 DOT OR INNER PRODUCT

Vector-vector multiplication is not as easily defined as addition, subtraction and scalar
multiplication. There are actually several vector products that can be defined. First, we
will look at the dot product of two vectors, which is often called their inner product.

Defined algebraically, the dot product of two vectors is given by

a · b =

[
ax

ay

]
·

[
bx

by

]
= axbx + ayby.

We multiply corresponding terms and add the result. The result is not a vector, but is
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in fact a scalar. This turns out to have many ramifications. The dot product is a mighty
operation and has many uses in graphics!

A.7.1 Trigonometric interpretation of dot product

b

lIa
II I

IbIl c
os

a

The dot product can be written in trigonometric form as

a · b = ‖a‖‖b‖ cosθ,

where θ is the smallest angle between the two vectors.
Note, that this definition of θ applies in both 2D and 3D.
Two nonparallel vectors always define a plane, and the
angle θ is the angle between the vectors measured in that
plane. Note that if both a and b are unit vectors, then
‖a‖‖b‖ = 1, and a · b = cosθ. So, in general if you want to

find the cosine of the angle between two vectors a and b, first compute the unit vectors
â and b̂ in the directions of a and b then

cosθ = â · b̂.

Other things to note about the trigonometric representation of dot product that follow
directly from the cosine relationship are that

1. the dot product of orthogonal (perpendicular) vectors is zero, so if a · b = 0,
for vectors a and b with non-zero norms, we know that the vectors must be
orthogonal,

2. the dot product of two vectors is positive if the magnitude of the smallest angle
between the vectors is less than 90◦, and negative if the magnitude of this angle
exceeds 90◦.

A.7.2 Geometric interpretation of dot product

â •
 b

a

â
b

ba b

Another very useful interpretation of the dot product is that
it can be used to compute the component of one vector
in the direction parallel to another vector. For example, let
â be a unit vector in the direction of vector a. Then the
length of the projection of another vector b in the direction
of vector a is â · b. You can think of this as the length of
the shadow of vector b on vector a. Therefore, the vector
component of b in the direction of a is

ba = (â · b)â.

So, ba is parallel to a and has length equal to the projection of b onto a. Note also that
b⊥ = b − ba will be the component of b perpendicular to vector a.

The dot product has many uses in graphics that the following two examples will serve to
illustrate.
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A.7.3 Dot product example: The distance from a point to a line

b
x

p

ba

â

b

Let us look at how dot product can be used to compute an
important geometric quantity: the distance from a point
to a line. We will use the parametric definition of a line,
described above, specified by point p and a direction vec-
tor â. To compute the distance of an arbitrary point x from
this line, first compute the vector b = x−p, from the point
p on the line to the point x. The component of b in the
direction of vector â is

ba = (â · b)â.

The component of b perpendicular to a is

b⊥ = b − ba,

and the distance of point x from the line is simply ‖b⊥‖.

A.7.4 Dot product example: Mirror reflection

v

vr

ân

Another very useful example of the use of dot product in
geometric calculations is the computation of the mirror
reflection from a surface. Assume that we have a flat mir-
ror surface, whose surface normal is the unit vector n̂. The
surface normal is defined to be a direction vector perpen-
dicular to the surface. Since there are two such vectors
at any point on a surface, the convention is to take the
direction of the surface normal to be pointing in the “up”
direction of the surface. For example, on a sphere it would
point out of the sphere, and on a plane it would point in
the direction considered to be the top of the plane. Now,

we shine a light ray with direction v at the surface. The direction of the reflected ray will
be given by vr. What must be true is that the angle θ between the normal n̂ and the light
ray v should be the same as the angle between the reflected ray and the normal, and all
three vectors v, n̂, and vr must lie in the same plane. Given these constraints, below is
one way to calculate the light reflection ray vr.

bvr

b

v

v

ân

To make the figure to the left, we first rotated the scene so
everything is in a convenient orientation, with the surface
normal n̂ pointing vertically, and the surface horizontal.
Now, move vector v so that its tail is at the reflection
point, as shown by the vector drawn with a dashed line in
the figure. If b is the vector parallel to n̂ from the head of
v to the surface, then by vector addition we have

vr = v + 2b.

Now the vector b is just the negative of the component of v in the direction of n̂. So,

b = −(n̂ · v)n̂.



326 � Foundations of Physically Based Modeling and Animation

Thus,
vr = v − 2(n̂ · v)n̂.

A.8 CROSS PRODUCT

a bx
b

a

The cross product a × b between two vectors a and b is
a new vector perpendicular to the plane defined by the
original two vectors. In other words, the cross product of
two vectors is a vector that is perpendicular to both of
the original vectors. The figure to the left illustrates the
construction.

This notion of cross product does not make sense in 2D
space, since it is not possible for a third 2D vector to be perpendicular to two (non parallel)
2D vectors. Thus, in graphics, the notion of cross product is reserved for working in 3D
space.

a

b

Since there are two directions perpendicular to the plane
formed by two vectors, we must have a convention to de-
termine which of these two directions to use. In graphics, it
is most common to use the right hand rule, and we use this
convention throughout this text. The right-hand rule works as
follows. Hold your right hand out flat, with the thumb out,
aligning the fingers so they point in the direction of a.

Now, rotate your hand so you can curl your fingers in the
direction from vector a to vector b. Your thumb will point in the direction of a × b. If
you reverse this, and first align your fingers with b and then curl them towards a you will
see that you have to turn your hand upside down, reversing the direction in which your
thumb is pointing. From this it should be apparent that b × a = −(a × b). In other words,
the order of the operands in the cross product changes the polarity of the resulting cross
product vector. The result is still perpendicular to both of the original vectors, but the
direction is flipped.

A.8.1 Trigonometric interpretation of cross product

a

b

ax
b

The magnitude of the cross product is given by

‖a × b‖ = ‖a‖‖b‖| sinθ|,

where θ is the small angle between vectors a and b. Thus, if
a and b are unit vectors, the magnitude of the cross product
is the magnitude of sinθ.

Note, that the cross product of two parallel vectors will be the
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zero vector 0. This is consistent with the geometric notion that the cross product produces
a vector orthogonal to the original two vectors. If the original vectors are parallel, then
there is no unique direction perpendicular to both vectors (i.e. there are infinitely many
orthogonal vectors, all parallel to any plane perpendicular to either vector).

Algebraically, the cross product is defined as follows. If two vectors are defined

a =

ax

ay

az

 , and b =

bx

by

bz

 ,
then

a × b =

aybz − azby

azbx − axbz

axby − aybx

 .
The cross product has many uses in graphics, which the following two examples will serve
to illustrate.

A.8.2 Cross product example: Finding surface normals

p2

p0

p1
v01

v02

ân

Suppose we have triangle (p0,p1,p2), and we want to find
the triangle’s surface normal. We can do this easily by use
of a cross product operation. First, define vectors along two
of the triangle edges: v01 = p1 −p0, and v02 = p2 −p0. Then
the cross product v01 ×v02 is a vector perpendicular to both
v01 and v02, and therefore perpendicular to the plane of the
triangle. Scaling this vector to a unit vector yields the surface
normal vector

n̂ = (v01 × v02)/‖v01 × v02‖.

A.8.3 Cross product example: Computing the area of a triangle

a

b h

a

b

Another application of cross product to triangles uses the
trigonometric definition of the magnitude of the cross
product. Suppose we have a triangle, like the one shown
to the right. If we know the lengths of sides a and b, and
we know the angle θ between these sides, the area com-
putation is straightforward. Relative to side a, the height of
the triangle is given by h = b sinθ, and we know that the
area of the triangle is A = 1/2ah, so we have A = 1/2ab sinθ. If we represent the sides
of the triangle by vectors a and b, a = ‖a‖ and b = ‖b‖. Since the magnitude of the cross
product ‖a × b‖ = ‖a‖‖b‖| sinθ|, it follows that

A = 1/2‖a × b‖.


